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The furan approach to oxacycles. Part 6: From THF to fused
polyoxepanes
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Abstract—We describe a stereoselective synthesis of cis or trans fused bisoxepane ring system with the iterative use of the furan
approach, enlarging the scope of our methodology.
� 2007 Elsevier Ltd. All rights reserved.
The so-called marine ladder toxins are a family of red
tide toxins with highly complex architectures and very
interesting biological properties including neurotoxicity
and antimicrobial activity. Their unusual molecular
architecture, a series of fused cyclic ethers having regular
trans-syn-trans stereochemistry, has stimulated numer-
ous iterative routes1 and indeed represents challenging
synthetic targets for organic chemists. Hemibrevetoxin
B (1, Fig. 1) is the smallest member of the marine ladder
toxins, which include the ciguatoxins, the brevetoxins,
the maitotoxins, gymnocin and gambierol.2

We recently described a new methodology for the syn-
thesis of oxacyclic compounds using either methoxyal-
lene or furan as starting material.3 The scope and
limitations of this very powerful methodology are
being determined and its application to the synthesis
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1: Hemibrevetoxin B

Figure 1. Structure of Hemibrevetoxin B.
of cyclic natural products has been demonstrated by
the enantioselective synthesis of (+)-(2R,3S,6R)-decare-
strictine L.3g

We now decided to further enlarge the scope of our
methodology by targeting polyoxacyclic compounds. It
was anticipated that the iterative use of our methodol-
ogy would lead to polyoxacyclic compounds. We
focused our attention on the synthesis of the bisoxepane
system as a model study towards the CD ring system of
Hemibrevetoxin B. The synthesis of cis fused bisoxe-
panes 3 and 4 was accomplished according to the reac-
tion sequence shown in Scheme 1.

Starting from tetrahydrofuran we easily obtained cis-
2,3-disubstituted oxepane 6.3b,d Protection of the sec-
ondary alcohol of 6 gave 56% yield of the desired com-
pound 7,4 together with 28% yield of alcohol 8.4

Compound 8 was casually our next target and could
be obtained from 7 by selective removal of the TBS
group. Compound 8 was easily converted into iodide
94,5 in 89% yield. Lithiation of furan 10 and reaction
with 9 afforded the alkylated furan 114 (13%) together
with free alcohol 124 (74%). Oxidation of 11 with singlet
oxygen followed by treatment with acetic anhydride in
pyridine, afforded butenolide 134 in 92% yield. Removal
of the TBDPS group of 13 with TBAF gave tricyclic lac-
tone 34,6 through an intramolecular Michael addition
(15%).

Alcohol 12 was protected to afford silylether 14
(94%). Oxidation of 14 with singlet oxygen followed
by treatment with acetic anhydride in pyridine, afforded
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Scheme 1. Reagents and conditions: (i) Refs. 3b and d; (ii) TBDPSCl, Imid, DMAP, DMF, rt (56% 7; 21% 8); (iii) AcOH/THF/H2O (3:1:1) (88%);
(iv) PPh3, I2, Imid, THF, 0 �C (89%); (v) 10, bipy, n-BuLi, THF, 0 �C–rt (13% 11; 74% 12); (vi) (a) 1O2, MeOH, rose Bengal, hm; (b) Ac2O, py, DMAP
(92%, 2 steps); (vii) TBAF, THF, rt (15%); (viii) TBSOTf, 2,6-lutidine, CH2Cl2, �10 �C (94%); (ix) (a) 1O2, MeOH, rose Bengal, hm; (b) Ac2O, py,
DMAP (63%, 2 steps); (x) TBAF, THF, rt (19% 3; 7% 4).
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butenolide 15 in 63% yield (2 steps). Treatment of 15
with TBAF led to the previously obtained tricyclic lac-
tone 3 (19%) together with tricyclic lactone 4 (7%).
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Scheme 2. Reagents and conditions: (i) p-NO2PhCO2H, Ph3P, DIAD, THF
DMF (77%); (iv) (a) AcOH/THF/H2O (3:1:1) (85%); (b) PPh3, I2, Imid, TH
MeOH, rose Bengal, hm; (b) Ac2O, py, DMAP (56%, 2 steps); (vii) TBAF, T
The cis-2,3-disubstituted oxepane 6 was subjected to a
Mitsunobu reaction7 to afford trans-2,3-disubstituted
oxepane 174 (Scheme 2). Alcohol 17 underwent the same
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, rt (78%); (ii) K2CO3, MeOH, rt (88%); (iii) TBDPSCl, Imid, DMAP,
F, 0 �C (95%); (v) 10, bipy, n-BuLi, THF, 0 �C–rt (87%); (vi) (a) 1O2,
HF, rt (25%).



Figure 2. X-ray structures of 3 (left) and 5 (right).
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reaction sequence described previously in Scheme 1 and
ultimately gave only one tricyclic lactone 5.4,6

The stereochemistries of 3 and 5 were unambiguously
assigned using X-ray crystallographic analysis (Fig. 2).
The stereochemistry of 4 is as indicated in Scheme 1,
taking into account that the final intramolecular
Michael addition occurs giving rise to a cis ring junction.8

In conclusion, we have demonstrated that iterative use
of the furan approach leads to the stereoselective synthe-
sis of polyoxacyclic compounds. Work is now in
progress towards the optimization of the yields and
the enantioselective synthesis of polycyclic natural prod-
ucts using this model study.
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